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Abstract
[ssdes recarding cenfidence and tolerance intervals are discussed within the
context of educational measurement. Conceptual distincticns are drawn between

these two tvpes of intervals; and examples, under various eiror and true score

models, are used to compare such intervals. It is shown that there rends to
be only small differences in tolerarice intervals under different true score

. , . ’ o . 1 L i _ o
It is also demonstrated that confidence and tolerance intervals are
-

mode Ls

not onily quite distinct conceptually, but also can be very different numerically.
Points are raised about the usefulness of tolerance intervals when the focus

is on a particular observed score rather than a particular examinee.
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To<roduction

fhrough the use of confidence inte:vaié for true Scores, one caq &iécburagé
interprétations of obServed4teSt Scores that are too litéral. Such an interval
1lso provides 4 gauge for the potentiai error associited with a measuréement pro-
cedure. This paper discusses confidence intervdls within

.

the context of educational measutrement,; arnd conirasts them, conceptually and

th%nugg numerical examples, against tolerance intervals: & major portion of the
paper compares tolerance intervais that are based on various true score models.
Some fundamental issues regarding true score cohfidencélintérVéié are dis-
cussed here so that diétinctioné'can 5% drawn between various intérpret;tiOns of
sHeSe intervals, and so that clear contrasts cafi be made with true sScore tolerafice
interials. Tolerance intervals, as such, have not been previously suggésﬁe& for
true scores, although intervals with the same or simitar form have appeared in
soth che early and recent literature:. For example, intervals around the familiar
regressed score estimates can be viewed as tolerance intervals under certain
assumptrions: Also; true score tolerance intervals can resemble Bayesian credi-
5tiity intervails; but because true Score tolerance intervils fall within the

ramework of the classicat regression model, the two approaches are quite distinct

rr

zonceptually.
Generally,; confiidence interval procedures are designed to cover, with a

cHosen probability, the value of a parameter. It is often emphasized that a rea-
ized itnterval, i.e., one that is based on a particular Set of observations or
5

[

realized sample, either does or does not covér the value of a parameter, and the

procedur

iaterpretation of a realized confidence interval must be in terms of the

Sn which it is based. An interpretation that is often suggested is that a .conri-

derve interva. orecédure will, over repeated appiicationms, cover & parameter 4

Jngsen proportion i the time.

b



fn a measurement context, a realized confidence interval for a particular

ciamines is often based on thé observed score obtained by that examinee and a
stindard error of meéeasurement that is estimated from a large sample of examinees.

“

Typically, more than oné observed test score Is not avaitable for a particular
examinee, but wé can interpret a confidence interval procedure for that examiee

in terms of his/her hypothetical distribution of observable scores. The mean or,

supéc-ed value of this distribution is the parameter of interest; 1i.e., his/her

trie score is the parameter to be covered by a confidence interval procedure.

Thé assumption that the standard error of measurement--the standard deviation
of the hvpothetical distribution--is the same for all examinees justifies the use

5f a Single estimate of this standard error for constructing confidence intervals

Actoss examinees: Bat a weaker claim could be mude about the overall confidence
interval procedure which does not depend on this assumption. Instead of claiming

~4at a4 coniidence interval procedure covers a particular examinee's true score

with a chosen probabilicy, it might be claimed that "on average' such a procedure
overs the true scores of a population of examinees -a chosen proportion of the
rime. This avéragés probabilitv is taken over the eXxaminee population and allows

io6s not have a coverage probability equal to the average probability dcross examinees.
The average coverage claim is explored in this paper in order to determine the con-

ditions that make it accurate.
The issue Of average covérage of a confidence interval procedure raises other

{ssues regarding interval estimation of true scores: In a measurement Situation

7

tn which potentiallv many intervals are reported, it- seems natural to describe
the statistical properties of the overaii procedure of setting intervals for some

sopulation of examinees, rather than Cestrict attention to the properties for an
: Ll - - : R
isolated axaminee. consider the typical situation in which all examinees with
-

O
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the same observed score receive the same interval. What seems c¢f Special interest

is rhe prcbabilicy of coverage of true scores for an interval uased on a par:iCular
obsérved Score. ‘More precisely, weé can ask: What is the proportion of the true

! ' . :
score diécribucion, conditional oa 4 pérticuiar observed score, that is covered by
i interval based on tnat observed scOre?l This is to be distinguished from the
interpretation of a realized confidence interval based on a particular observed
score, which must be in terms of the confidence interval procédUré rather than
the realized interval. In a measurement Cohteﬁc; there is a distribution of true
scores associated with a popuiétioh of &xdminees. For thi§ reason, we can inter—
Dret an incér&ai baééd on a pérticuiér obServed scoré in terms of the COﬁaicional

axaminee's true Score. Thus, we can design an interval to cover sSome proportion

of thée conditional true score distribution.

An interval designed to cover some proportion of a diswtribution is usualiy
referred to as a tolerance interval. Such intervals are the major focus here.
3ecause tolerance intervals for conditional true score distriburions require a

"strong' true score model (an explicit specification of the joint distribution

57 sserved and true scores), four such models are used for comparing the inter-
vils thev produce: The zomparisous, which comprise a major portion o: the paper,
are 5Sased on a variaty of test characteristics adapted from Standardized tests.
Similarly, confidence intervals from chréé érror models are compared, and are

then contrasted with tolerance intervals.



Confidence Intervals for True Scores

Considered in isolation,; the process of making an inference about a particu-

-

Lar examinee's true score suggests that a confidence statement can be a useful
part or the process. When we focus on examinee a, we are interested

in a parameter T&::Ché true sScore of that examinee. With T, defined as the mean

- R . , . .
o0 observable scores, X, ‘for that examinee, it Seems natural to attempt td ac-

juiré information about the distribution of X_ and; a confidence intervat procedure

Seems to be a succinct method for expressing such information. For example, the con-
idence statement P[L(Xa) T8 U(Xéj] =1 - @ ; where £ and U are variables depen-

£
dent on the random variable Xa tand possibly other random variables) and 1 - x
is the coniidence coefficient or the probability that potential intervals cover

Tt can provide information about thée distribution of Xé and the accuracv with
which < ‘measures 7 -
a a

Ubtaining enough ifformation to feel comfortable in Making such statements
mizht require sSeveral observations on examinée 4. But in @ measurement gontext,
certain factors usually preclude such an approach: Because of the difficulty in
obtaining several observations on full test forms; and ﬁéiéﬁﬁiéi‘ﬁféﬁlems with

sractice, fatigue; motivatiom, etc:, more than two observations on any examinee

are rareiv obtained: Instead, properties of the overall measurement procedure,
sased on a poputation of examinees, are used to dstimate conficence intervals for
1

sach examinee. Strong assumptions could be used to jusStif¥ a conficence interval

srocedure for a particular exdminee. For example, the error variable Ior examinee &,

S

L
—

, for 211 examiness.

< RS T N

14

= - T could be assumed normal with the Same variance,

- S —— e == 2 5 3 1. . P T i T N S

accurate estimate of o< could then be obtained; say, through the administration
e

two purallel forms to a large sample of examinees: This would allow a confi-

1
[RRN

jence starament of the form ?(Xa - ééé Xa + éjé) = 1 - % to be used rfor
examinee a. Th2 ¢ could be determined from a z or t table depending on the sample

Size fur o -

ERIC
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- zeneral form X + z- T -

Still stronyer assumptions might be used so that even estimatiorn of o< is
LY

1]

avoided. TFor example, with number correct scoring, the binomial error model
:

(Lord & Novick, 1968, chaps: 11 & 23).is sometimes viewed as appropriate. If

this model holds for an examinee, we can simply use the examinee's observed score

and the number of items in a test to eater 'a table of confj

sroportion correct

true score.

A Weak Claim About Confidence Tntervals

Such strong assumptions allow the strong claim that is made about a confi-

dence interval procedure for a particular éxaminee. However, if 3uch assumptions
are unwarranted, one could sti.l make a weaker claim about the confidence interval
For examplé, it mijzht be claimed that, on average, iritervals of the

srocedure.
/7, cover examinees' true scoreg with probability 1 - z ; where
- B Y SR <1 -

reported, and where 2,/,
2/2
standard normal distribution. In this case, the confidence interval procedure for

coverage probabilitw that is§ Zreater

1 particukar examinee can be associated. with a
5r 1285 than 1 - ¢ , but the average across examinees is 1 - X ~
.
This average coverage is expressed as
gloc X - = <z, = 1 -2, A
Lty a - “4/le

¥ is the expectation operator over examinees, the probability statement is

\
)

Che coveraze probability for examinee a of X. * zﬂ/,s , and 7 i§ the average
j ‘ a /27 e

,

2
meisurement orroar viriance for the populatica of examinees. One

A wav of writing *
“his in imfegral form is
.
: : : T.)
. f
\ ! L _ N
SR if (o) = U 2 o, (2)
N 2 B
aj
7_, . i{)
e



where Fa(e) is the cumulative distribution function of e

a and the integral is in
Stieltjes form to allow for discrete éé (both end points dre included in the inte-

gfation).’ The Summation is over the N examinees 4n the.population for which the

4
iverage covéerage claim is made. We can switch the order of integration in Equation
2, 39 thdat
; ‘

— -

z -

- a2 e

1 N :
N 2 dF (&) = 1 - 31 (3
a
. a .
L3
-z P )

x/2 Te - :
Now the limits * 2,75 To can be viewed as points on a mixture of the distributions
5f the: error variables, or the marginal distribution of error. Thus, the average

‘oeroze claim simplv states that the area in the marginai distribution between

=z
o2

STRR-D poincs
As derined, the mean of éa for s@ach examinee is zero, so these two points

ire équidistant from the mean. Of course, in order for this average coverage
clatm to hold at every value of z, ; normaiity orf the marginai error distribution

7~
/

necessarv. However; if we onlyv make the following claim, "X * 1.96 3_ has an

iverage coverage of .95, approximately,” many distribution shapes will do.

If we just assume that tnhe marginal distribution of error has one mode,; we

can uSe the Camp=Méidéll inequalitv (Rao, 1973, p. 145) which statés that

whera = fs the mean; T is the standard deviation; s is the absolute value of the

rom the mode, and + > s: Say, tfor

i

randasrd deviation onits that . 1is

o]
€
2
o]
w
(A
[
11,
i

wample., 5 = :Z, then average coverage of X * 1.96 7_ is greater than .83 ror anv
e .

'l
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‘mi-modal distribution: Thus,; with an accurate estimate of jgl(the-avérag; of : ;

‘nalwvidual error variances) and z,/ around 1.96; one might feel comfortable in
. 1/z . ’
=iiking gn wverage coverage ciaim around :9: .
. - . _ - Y .- _t s . 5 e -
Cledrive an average coverage claim Is rfairly weak. It describes a propert -

~7 the oveérall intérval éstimation procedure in a measurement context, but does’

be
r
re
o)
[
T
(&%
o

scribe the limitation of ghe information from Kj about examinee a's

Tre svore. Nor does it make danv claim$ about what to expect at different score
soists.  [7 evidence is available indicating that error variance differs along ‘the -

( N

: N - - T L . 5 S N
Scoré Scale, then an average coverage claim seem$ especially uninformative. How-

ever. consideration of such differences when constructing intervals could allow a

staim of average coverage for difrferent ranges of observed scotes.

Coverage of Trie Scores Conditional on Observed Score: Tolerance Intervals
That an average coverage claim over different parameters (i.e., true scores) is

sensible in a measurement context raises the question of whether we are always
interested in an interval estimate for a particular examinee. Under circumstances

in which a parrticular examinee's scorz is being interpreted by a career coumselor. . ,
0L classroom teacher, a proper conrfidence interval seems quite uwsefol in combi-

aation with other information about that examinee. In contrast, the process

2f 3core reporting, in which large numbers of examinees are given the same score

7

- N - - - - ~
ind interval, is not intimatelv concerned with a particular examinee. Rather,

there is a discribution of true scores that i§ referenced bv a particular ob-

served score: Thus; in a measurement CortexXt e can interprét 4an obssarved

score in terms of the conditional distribution of true scores associaced with it.

ERIC I | |
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In a tvpical situation inm which the group of examinc~s with the same ob-

served score receives the same interval estimate; it seems natural to inquire

about the proportion of the distribution of true scores given an observed score that
i3 covered by the interyal: 1In other words, for an observed score x (realized

value oOf the ¥ wvariable that represents observable scores for the population of exam

inges),; there is a proportion of the conditional distribution of true scores
; .

chic iy covered by an interval like x * ¢ 5, . This proportion, which is a
“onditionat (om x) probabilityv; is conceptually distinct from a confidence coeffi-

cient. If we condition on an pbserved score; then a confidence interval does or
N »

V4

core; i.e., the conditional prob-

6]

does not cover a particular examinee's true
abilitv is not in reférence to any particular examinee. Later, intérvals of the

Sorm X o Je are evaluated in tarms of the conditional distribution of true scores:

Tolerance Intervals

require

Probability statements about conditional true score distributions
} , N
Scrong dSsSumptions or data that are usually not available: In particular, the
joint distribution of observed and true scores Is needed:. For expository purposes,
we <sume chat the distribution of error conditional on true score is normal with
mean zero and a variance that is constant across true scores. ILn addition, true

score is assumed normal. Thus, X is the sum of two independent and normal vari-
] |
abies - and e; where - ignormal(u, 7=), and eis normal(0, =) .
T : =
Under tHis model it +s well-known that the conditional distribution of

siven X = % is normal(s<x + (1 - o3)u; 5°72), where 5% = CORR(X, =)= = 1 - = /7% .

We will refer to the mean of the conditional distribution as

w
(m
=]
o
(nd
v
o}
Tt
(m
"
C
i
Ui
(.
G
r.
(11
4]
(Y
T
(T
¥
9
@}
~
Co
G

which is the famiitar regressed score e
Novick; 1968, pn. 64-69).
O
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Since the conditional distribution of T given x is normat,

T(x) ¥z, ET (5)

is an intervat Gﬁiéﬁ covers the central 100(1 - a)% of the conditional true score
distribution ascociated with x (this holds for all values of X). It is referred
to as central because bdtﬁ tails of the conditional distribution; not coverad by
the interval, contain iéd*a/zz oé the true scores. ‘A céntré; inEE;véi, in the
casé of the normal, is also thé shortest interval that covers 100(l - 2)% of
the conditional distribution. , "

Such intervals uare quite distinct from confidence intervals. As noted, a

confidence interval procedure is desigrned to cover, with a chosen probabilitv,

some parameter of a distribution: In contrast; the above interval is designed

to cover a chosen proportiom of the distribution of a random variable. Intervals

ot this tvpe are referred to as tolerance intervals. Proschan (1953) provides

some basic comparisons between tolerance and confidence intervals. ©
Before discussing some issues regarding the estimation of tolerance intervals,
some comparisons will be made between confidence and tolerance intervals in the
i
context of measurement: Stanlev (1971, pp. 379-382), among others, discusses an
“i{nterval similar to that of Equation 5 and appropriately refers to it as a ''confi-
R . . . 10z Tl I nl b - o s N d = 1 3 =
derve lnterval in a loose sense. Also,; a few of the following points have been

L viched on in Che measurement literature, though from a different perspective.

g Lo S NS - o s ; ) ' '
The difference between Equation 53 and his Equation 19 is his use of the t
distribution instead of the z and his use of estimates of the parameters u; 5%,

and -7 . Estimation tssues for tolerance intervals are compiex and have not been

soived Tor the case where the variable of interesr is unobservable. Thus.: use of

+ ¢ Zistribution ‘ust nrovides wider intervals than the =z.

- : N 1&;

Q .
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The justification given above for using a confidence interval in a measure-

Ment context is that a score interpretation sitoation catis for isotated interest

in a particular examinee's true score: & mistaken Interpretation of a repo-ted
or realized confidence intervai based on a given score might then be th;t it pro-=
vides a range of ﬁféBéBiébvalueélfdf the true score of that examinee. Instead
of considering a reported confidencé interval as an indication of the accuracy
with which an ekamiﬁee;s true score 1is éstimated; its mééning is distorted to
include considératibﬁ of the liRéiy véiuéé of true scores in the pOpuiation of

C L2 o . e i s _ ,
or a given score x. Within the context of classical confidence inter-

i

cxaminees
val estimationy. such an interpretation makes little or no sense because, again,

the vdlue of a Single parameter is of interest. Within a measurement comtext,

however, thera is a distribution of true scores of interest, so that such an i
tirprecation mav be desirable. But confidence intervals are not designed to pro-

Such interpretations, and thev would lead¥{ at the least, to inaccuracies.

(Ui

vid
Consider again the model with normal and independent error and true scores
(ind no two examinees have the same true score). A confidence interval

of the general form X * 217: 7, would, for everv examinee, havée a confidence
coefficient of 1 - 25 i.e.., the probability that an interval of this form covers
in examinee's true score is 1 - 2 . In contrast, a reported confidence interval
sasad on a realized value of ¥; x T 2&/2 I, éither covers an examinee's true

scora or does not. Now, bv considering the population of examinees, chis same

A . . Ll L
It is true that Bavesian approaches allow isolated interest in an

examinee's trie score and a statement about probable values of that true score.

However, the nature of probability changes,; and, in anv case, 2 classical con-

idence interval procedure would not be used, typically.

RN

1o
O %
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reported interval will, typically, cover more or less than 1 - =« of the true

scores that can be associated with x. The interval x ¥ Zd/‘ 0. covers somewhat
- e

more than 1 - x of the rrue scores assoctated with X, when % is close to u .
and less when it is far away: It is easily shown Eﬁéf the average proportion
>
covered, taken across the variable ¥, is in fact 1 - 2
In order to determine, under this model, the proportion of the conditional
true score distribution covered by a realized interval of the form x ¥ z . o

we need only specify the reliability (¢2) and the number of 3¢ units x 1is from

2 - - . i . . - . § - o
~ . Let us take o< = .8, and for simplification 2,5 = 1 (i.e.; 1 = 2 = .68).
1, .
When x = u, the realized interval x T Ty covars the central 74% of the distri-
Sution of true scores associated with x. When x =32 + 0 or x = u - I x Te
X :

covers 68, of the conditional true score distribution, but not the central 68%,

i.e., the areas in the tails of the distribution n t covered by the interval are

ho

unéquai. whéen x = u + éoi or ¥ = u - 202 , X + Oé covers ohly 53% of the

sonditional true score distribution——again not the central 53%7. To see this,

consider that, urnder the model, the area berween x - éé and x + ;e is béing

svaluated for the distribution of T given x which has mean 52 x + (1 - %)z and
i

variance :- ize . Thus, except when x = . , realized confidence intervals will
5e centered farther from u than the mean (center) of the conditienal true score
distribution. 1In contrast, tolerance intérvéié are céntéréd on this mean. Even
though on average the proportion covered is 68% fcr_this example; one-third of
the confiderice intarvals will cover less tharn 68% of the conditional true score
diStributioné. Thus for this example, at ieast, realized confidence intervals
would be veryv misieading if interpreted as tolerance intervals.

Anothér related criticism against interpretirng the interval x + Zi/: Jé
as a tolerance interval for x is that it can be considered more appropriate ﬁof

Jbserved scores tldt are fartHer from 2 (more extreme) than x: This is because

thes interval covers a greater proportion of the conditionat discributions of

1¢
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tiruN scores for scores more extreme than x than it does for x itself. Again,

tthi§ interval 1is not centered on the mean of the conditional true score distri-

baucion. Specifically, there is an observed Score x* Such that P(x - zi/7 s, 5T

¢ %+ oz /2 51X = x*) takes on the large5t value, and this x* is more distant
1/ e

%y = than is #. The value of this probability is also larger for all values

pestween x* and x than it is for X, and the same holds for more extreme scores

hetween 2x* ~ x and x*: The value of x* is § + (x - u)/0°? : To understand why

thie probability is largest under x*, comsider that fhé conditional mean of Tt

. /
sdv&a «* Is X; l:e:, x* makes the interval x + 2&7;5é centered around T(x*).
Ll S } o
Amd. the values between 2x* - x and X are also associated with larger probabili-
t¥ed than x simply because their comnditional means are closer to t(x*) than is
)

These comparisons have been made within the context of the normal error-normal
t rug scoreé model. However, similar, though perhaps not as strong, statements could
he made for other models. We can expect, for instance, that for most reasonable

t rde score models; x will always be further from u than the mean of T given x.

Two Perspecrives onm Tolerance Interval Estimation

When parameters of a distribution are not known preciselv, estimation o
t olerance intervals have been found to be fairly simpite or quite compilex depending
»n, amoug other things, the properties required of the estimator. There are two

Consider the binomial error model and a true score distribution that is
iSsymed aniform batween 0 and i: The mode of the conditional distribution of T
givan x is then x/n (Novick & Jackson; 1974, p: 114): Since the highest”density
reglon converges on the mode, this provides a contrast to comments above. However,
the uniform is an interesting prior but is unrealistic as an empirical distribution
for trué scorés. Farther, cenfral tolerance intervals converge on the median rather
thaan the mode. 1 e
Q 1 /
ERIC
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altermative properties thafr are discussed. One is that the interval estimator

cover on average the desired proportion of the distribution. The desired pro-

portion i3 then referred to as the expected coverage. For the normal univariate
case, Proschan (1953) provides such an estimator. The expected coverage require-

ment of tolerance intervals for the conditional distribution of true scores
(given %) can be writtem as
Tx) -

= £(< %)dx 1=
E(x)

where U(x) and L(x) reprasent upper and lower iimité.of the tolérance intérval
. o ) o 3
tor given . In the discussion above, U(x) = <(x) + 2z 3 and L(x) = t(x) - z-
. a/2 Te af2

3ut witiouc knowledgé Or u, o+, and ==, Utx) and L(%) are random variables that

depend on estimates of these three parameters. Thas, the expectation is over
Uiy oand Lex).

[he other alternative propetrctv piaces a confidence statement on the pro-
porcicoa of the distribution covered bv an estimator. It places a probabili:y
on the event that a tolerance interval estimator covers at least the desired
proportion of the distribucion. In terms of the conditionmal distribution of

true score t(given x) this can be written as

N ¢
p FCoix)dT L - 4 =
E(x)

where ) is the confidence coefficient. When the parametéfé of the conditional

i
b

distribution are assumed kmown, X Otherwise the probabilitv depends on

timics, might be choren so that the probability is .95 that the limit estima-
’ ' "v‘v*v' - - ] . . - 3 N -
tors cover at least 68% of the true score distribution associated with x.
\(o - 15 '
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Probabilitv of covérage estimators receive more attention than expected
covérape estimators, mainly because they provide a more informative statement
about the behavior of an estimator. Some even definz tolerance intervals only

-

in terms of probability of coverage: Alsc, probability of coverage is more use-
ful in 4 major application of toleranée intervals; namelvy quatity control prob-
lems. It does, however, create greater compiexities, and typically A is close

to 1 which produces wider intervals cthan expected coverage intervals. Wald and

wolfowitz (1946) first provided an approximation under normality for a probabilicy

-of coverage estimator. Wallis (1951) solved the estimation problem for the linear

O

regression model, which has some relevance to our problem. I‘ore current work

has focused on simplifying methods and extensions to simultaneous intervalé.fof

the regression case (Seé,é.g.} Lieberman & Miller, 1963). \
Tolerance intervals are réréiy discusséd in statistical methods texts

(Dizon & Massey, 1962, p. 199; and Graybill, 1976, pp: 270-275, are two exceptions).

Instead, the related issue of prediction intervals is often discussed (see e:g:,

Graybill, 1976, pp. 267-270 for prediction intervals in the linear regression model).

observation or linear function of several observations: Note that a I - 2 pre-

diction interval for a single observation is the same as a tolerance interval
o R / R
with expected coverage of 1 - i (Proschan, 1953):. The key to the identity is

a tolerance interval is desired.
Because none of the research on the estimation of tolerance intervals con-
siders the case in which the variable of interést is unobservable, nore of it is

directly relevant to thé problem at hand. Even prediction intervals for the Iinear

regression model would not sarve as an expected coverage interval for the normal

orror and true score model because the basic assumptions are quite different under

the two models.

RIC*
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Comparison of Tolerance Intervals Under Four True Score Models

The focus of this sectionm is ont the comparison of tolerance intervals cal-
culated under different measurement model assumptions. Since.tclerance interval
egstimacors have not been derived for these true score models, comparispns are
made under the presumption that accurate estimates of model parameters are avail-
able. Essenttially, all that is presumed is that large enough samples are avail-
able to accurately estimate the mean and variance of the observed scores: This
is because two of the models need only these two parameters for calculating toi-
erance intervals; and the other two models need only one additional parameter that

does not seemto play a substantial role in the intervals. It seems important
{ - ‘ :
to focus attention on a comparison of true score models before tolerance interval

estimators are derived because of the strong arid sometimes unwarrantéd assump-—
tions associated with each. The effécts of différencés in assumptions on dif-
farences in toieranqe intervals can facilitate not ohiy an informed choice of a
model for calculating intervals with large samples but also a choice .gr the defi—
vation of estimators.

Tirst, the four true score models are described. Equations for calculating
intervals under these models are then provided. Thie is followed by detailed
comparisons among tolerance inte?Vélé based on test characteriscics that were

Description of the Models

For the comparison of toZerance iﬁééfﬁéié, the following measurement models
were used: (1) the normal model discussed above in which the conditional dis-
tribution of observed score (given true écofé) i5 normal and the distr.

Of true score is normal (NORMﬁ; (2) thé coaditional distribution of obse

score 1is binomial snd the disStribution of true score is beta (BET&); (3) -
. .

conditional distribution of observed score is binomial but an angular (variance

étdbiiiZingj transformation provides approximate normality, and vields a normal

-rie Score distriburion (BINORM): and (4) the conditional distribation of observed

score 1is compound-binomial but an angular transformatisn provides approximate
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All four models have been discussed previously in the literature and except

for the NORM model, thev were developed for number correct scoring: Lord and
Novick (1968, chap: 22) provide a discussion of the NORM modei--especially normal
and independent error. Atthough this model was not designed especially for

qumber correct scoring, it is included because of its convenience, historical

is.larity, relation to the BINORM and CONORM models, and as a contrast with thé

ather three models.
The B3ETA modet . is discussed in detail bv Keats and Lord (1962) and subse-

quentlv in work concerned with mastery testing (see, e.g., Huvnh, 1976). Al-

though the beta-binomial Eé?ginafiéﬁﬁié*ﬁﬂﬁgzhemztiéal convenience, and the re=

sulting model depends on just two unknown posulation parameters, the fit to

number correct observed score distributions is often impressive (see; e.g.,
. o *gf' B Lo

Xeats & Lord, 1962). Wilcox (198l) reviews competitors to this model

and concludes that it frequently gives sacisfactory résults and that choosing a

more complex model involving addition&d]l free pardmeters cidn be quite difficulc.
_ o ] ) Lo o
Robustness of a methodology based on this model has alsc besn shown (Gross &

\ s

\

Shulman, 1980).
The BINORM model was adopted from Bayesian treatments of estimating true
scores from observed number correct scores (Jackson, 1972; Novick, Lewis,; &
Jackson; 1973; and Lewis, Wang, & Novick, 1975; also, Hambleton, éWéminéthén,
Algina, & Coulson, 1978, provide a convenient summary). In this treatment the
conditional distribution of obsarved score given trie score is assumed to be
b;nomial and an angular transformation providéé, épproximateiy, a normal error
variabié With stable variance (5n + '2)_i dcross the trie score rarnge, where n
is the number of items in & test. It s also assomed that the angular trans-

formation vields, approximately, a normal true score variable (or prior in their

O

RIC
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B:ivesian treatments): This transformation results in an expansion of the true
Score Scaie at the extremes which makes the assumption of normality (unbounded
tails) much less of a problem than under the proportion correct scale. In addi=
tion, the transformation can account for the skewness that often cccurs with
observed score distributions associated with a mean (proportion correct) that

ts not close to .5.

The BINORM model is similar to the BETA in that both begin with the
binomial for thé conditional distribution of observed score. The contrast in

the assumptions about th¢ distriputicn of true score enables examining the sen-
sitivity of t:'o;lérz'.inc’e intervals to such assumptions .

The BINORM and CONORM tolerance intervals provide a comparison of a dif-
ferent nature. AS in the BINORM model, the distribution of transformed true
score .s assumed normal for the CONORM. But under che CONORM model, the conditional
distribucion of observed scores is assumed compound binomiai.pacher than binomial:
The two-term approximation to the compoundibinomiéi suggested by Lord (1965) ks

simplifies considerations in the modei. Noting that the conditicnal variance

s

uader the binomial is nt(l = 1), the conditional variance under the two-tarm
ipproximation is (n = 2k)={i = 1) where k is a parameter to be defined.® Thus,
with & » 0, shorter intervals can bé éxpected under this model; all other things

heinz equal.

,

From here on, T can be interpreted as a particular true score or the ran-

Jom wvariable for true Score, depending on the context. R

ERIC
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The appeal of thic approximation in our case is that it provides an alter-

. & . B
native conditiomal distribution for bSounded observed scores and

that the overall error variance (across examinees) can bé madé to corrcSpond

B o o : . : 4 :
(with an appropriate choice of k) to an estimate of average erronr variarnce ob-
tained under weaker assumptions. Lord (i965) EmphasiZES the faét that k can be
chosen 5o that average error variance corresponds tc that which would be ob-
tained bv using a KR20 eétimafe of reiiability;

The uSe of an angular t?ansformation‘ﬁiﬁﬁ téé&'é two-term épﬁfégimétion
was pre "iously suggested by Wiiéék (1978). Because thé conditional variance is
(n - 2k)t(l - 7), a variance stabilizing transformation that is appropriate
for the binomial is applicable here also.

on of Tolerance Incervais

As noted above; we presume that accurate estimates of population parameters
are available: 1In otner words, we take the libertv orf providing details about

calcutating intervals given the parameters, while, at the same time, providing the

sstimation equations uSad for the example tests that follow. Cnder the BETA and BINORM

models, estimation simplv involves calculating a medn and variance of observed
scores. Estimation for the NORM and CONORM models additiomaliv involves the
caleculation of the variance of “tem difficulties: This holds for these two models

bécausa ifiterest is restricted here to a KR20 estimate of reliability for the

examples provided: More gemerailyv, other estimates of reliability could be used

for these two models:
Note that all the intervals that are calculated are for a proportion
correct true score scale. The observed number correct score is still referred

to as x for a particular score and ¥ for the random variable. Thus, a true

SCore Tor an eXaminee is defined as the expected number correct score divided by

tne number of items (n).

QO
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The expression for tolerance intervals under the NORM model has been given
in Equation 5. However, there are slight changes in the expression because of
the change in rthe true score scale. The conditional distribution of 1 given
2

L, g% s.t(%) = u + 02, (x/n = w), u = E X/n,
< e]’ where .t (%) U T_X(*c/n M)y U E X/n,

X = x is normal[=(x), o

At

2

Ja Thus, the lower limit of a tolerance

ST, = CORR(I, K)z, and o2 = (i - D%‘)U
T e X

interval on the proportion correct scale (the 100%z/2% point of the conditional

true score distribution) is
SO NSRS )
/2 .

and for the upper limit (l00%[1l = %/2]% point) z plus replaces the minus.

For the example data used here, it seemed appropriate to estimate 5~ bv
] X
KR20. Note tha! this means error variance 1is a rfunction of n, aS 1s the case
for the other three models. It also means that the tolerance intervals can be
i c g - L . . o - 3 -
expressed in terms of just three population parameters: E X/n; JQ/ ; and a
X/n

varameter oy the variance of item difficultv: This last parameter will be dis-
cussed later under the CONORM model.

Under the RETA, the conditional distribution of X given t is binomial,
and the distribution of 1 is beta with population parameters a apd b. This

makes the conditional distribution of = given x beta(a + x, b +n - x). {Using

tihie usual notation for the cumulative distribution function of a béta, the

lower limit is calculated bv solving

[L(a + %, b+n-x) = a/fz {7



for.L, where L i5 the point below which 100%*a/2% of a beta (a + x, b + o - x)

'falls. Similarly, the upper limit can be determined by solving

e,

for the calculations.

Note that this choicé of L and U provide central tolerance intervals: Because
the BETA (5 asvmmetric when its parameters are unequal, shorter 1 - « intervals could
b found than central intervals. However; interpretations of L and U would then

Cndet the BETA model, convéniént estimates of the true score distribution

parameters are:

W= a(l/gR2l - g, ) (9)

5 = n(LRR2L - 1) - 4 ' (10)
where 1 is a mean (proportion correct) 665etvéa score (see Lord & Novick, 1968,
pp. 516-517 and pp. 520-521, and note that their "b" differs from ours by n - 1):
Since KR21 is a function of n and the mean and variance of obseérved scores,
juét thesé two statistics are necessary for calculating approximate interwval
undér the BETA. (Recall that it is assumed that sample sizes are larg: enouzh
to provide accurate estimates of the observed score mean and variance.)

%éf the BINORM model,; the angular transformation Suggested by Freeman and
Tukev (1950) is used: '

1. = % 5TV —= + sty L g:i : 5 - (1)

B <)

ERIC
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Under the binomial, this transformation is considered to provide the most sta-

bility in variance among the angular transformations suggested for this distrds~-

bution (Mostell&r & Tukey, 1968), and is the transformation used in most of the

- N X < - - - £ - . .
Bavesian references givén above. The conditional distribution of G {variable for

- - - - - - - B
. ) - s = - . — — - - . .- -, -L - - - e -
2) z2iven 1 is, approximately, normal with mean y = SIN W/? anck variance

s RN & s Lt i i . - .. .
(Zn + 2) » and the vy variable is assumed normal. Thus, tolerance limits can
52 calculated under the transformation by u$Sing the fdct that the conditional
discribution of v given g is, approximately, normal [y (g), Q:G/(4n + 2)], where

Y - .

(g) = E v + b"(G(g - E G),
and

R R T

= a 3¢ 2

g) otz o &+ 2) . (1

The inverse transformation (SIN)- is then applied to the iimits to rsturnm to the

'rizinal true score scale.

The needed mean and variance (E G; :é)'can be estimated in a number of
wivs: N simple approach its to apply the Freeman-Tukay transformation to the
observed scores and to calculate their mean and variance as estimates of

TG and':é . Since E v is approximately equal to E G , the mean of transformed

observed Scores can be used here alsoys

2



E

tion correct scores are already available,; a more convenient approach to esrimaticn
emplovs a Tavler series approximation (seeé, e.g., Johnson & Kotz, 1962, pp..28-29)

for € G and 3= . Under the Freeman-Tukeyv transformation,

G
- 1 ¢ _ ) s \ 52 1 - 2p 1 - 2q
ec ¥ — (sl esiye )b —F 00— [ ————r —————
2\ , 16(n + 1)= | fp(1 - p)] "2 [q(1 - 9] "2
(13)
and,
-~ - O}‘{ - -k - CL=3s - SR
S — [[p(l -p)] T+ a1l - q)] ] . (1%)
’ 16(n + 1)~ X

an/(n + 1) and q = (gn + 1)/{(n + 1):. Thus,; accurate estimates of = = E X/n

where p =
and 3:

X

= ﬁiii/n are ail that are needed for the BINORM intervals:

ind true score and then transformed back to the proportion corr: : scaie: For

this model we refer to true score undet the transformation as n = 3:% "4ft — in con-
trist to vy above. The distinction is made because of a diffefemce in vafiances.
Under the CONORM, the conditional variance of G given T ;s (n = 2k)/(4n- + 2n),
ipproximatelv. This implies that with k > O, ER oiG ﬂ

5Again, this estimate of E G can be used for E v since the two parameters
are approximately equal. However, the following Taybr series approximation can
also be used:

fZsilaT e 2 (ean / (80=sH)7]
where 7: can be esstimatec from z and 5% . For the examples, the tolerance .

7

O .mits reported in two decimal places do not differ under the two approaches.

RIC
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: ; : ; - D e
(o) + _ R ¢ o 3 2 P

ntg) = 275 Dnc[(n 2k) / (4n* + 2n) | , v (15)

. where
'1"7 = o ; 2 ., — & l'
and
L2 2 _oa a2 gl Sy ]
e 1 (n 2k)/[GG(4n + 2n) ]

- ~

The (SIN)- transformation provides limits on the 7 scale:. Comparison of Equations 1Z
and 13 indicate that with k > O; CONORM intervals will tend to bé shorter and less

regressed to the mean than BINORM intervals.
In addition to éStimatin% E G and aé for thée CONORM, an estimate of k is

atso meeded. As suggested by Lord (1965, p. 266),

) SiCn - lj B 3 >
kK = — = 2n S; s o (16)

2[8(1 = &) = 3y, - S3/n]

where

{, being the item difficulty (proportion correct) of the j-th item, and i being the m

-

sroportion correct for the sample on which the difficulties are based. as noted
O

O
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above, this estimate of k makes the ave.age errcr variance on the observed score

scale the same as would be obtained through a KR20 (Tucker, 1949, expresses KR20

(U

st

. . ~ N
in terms of u, /n’ and St ).
n i

Examples

Tables 1 through 4 providé selected tolerance iimitS;for four different but

realistic test charactetistics. Test chardcteristic§ refér to the four parameters

sufficient for calctilating tolerance limits for all four models; namely, n, E X/n,
32, and 5 (or KR20). The characteristics used are realistic because thev

<
Sl

were taken, with one exception, from established standardized tests; and are dif-

ferent because they allow contrasts between long and short tests and symmetric

and skewed distributions:

.5, provides tolerance limits for observed

35 and E X/n

Table 1, with n
numbetr correct scores of 7, lﬁ, 21, 28, and 35. Columns headed %X/n and N.H. Dens.
provide proportion correct scores and the corresponding negative hypergeometric
densities that are associated with the BETA (Lord & Novick; 1968, pp: 515-520):
Thé three tolerance coefficients, 50%, 68%; énd 95%, were chosen to provide in-
dications of différences in the conditional distributions at different percentage
pointé. Aiéo, these three coefficients Have had historical popularity (SOZ for
setting ”probabié error" intervals and for the interquartile range, 68% for one
standard error interval§). Noté also that the 95% intervals in Table 1 are,

approximately, three times wider than the 50% intervals and twice as wide as the

53% 1intervals.

25
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The similaricy of the limits of the four modeis Is striking. With the
swception of the extreme observed score, 35 correct, and excluding the limits of
the NORM model, the limits differ by no more than .0l.
are at the extreme scores. Recall that under the NORM model, intervals for svery
sbserved score are the same width: Because error variances of the other three
models decrease as true score ﬁSGéé away from .5 (the mean in this example),
Aarrower intervals are found at the extremes. In Téblé 1 this can be Seen at
the score of 35;and to a lesser extent Aat scores of 78 and 7. Around the mean,
all four modeils provide limits that are quite close. Notice also thar timics/
under the NORM model can be below zero or above one.

Recall that error variance urider the CONORM is smaller than under the SINORM

p
to a degréeé that is dependent on Si (or equivalently, the difference between
XR21 and KR20). The effect of this on the limits in Table 1 appears to be
Slisnt but predictable. The intervals for the CONORM model are shorter by .01,
approximatelv. Also; the differences are primarily reflectéd in the upper
limits when observed scores are below the mean,; and the lower limits when observed
S-5res are above the mean; I.e:; these limits,; under the CONORM model, are .01
—ore distant from the mean (less regression) than under the BINORM.

The error variances for the BETA and BINORM models are the same
but the shape of the true score distributions are different. From Table 1, the
sfisct of this differ- ce appears to bé mainly on the extreme score of 35: The
ioﬁéf iimits under the BETA are closer to the mean than under the BINORM and
CONORM. A slight but opposite trend is found at scores of 7 and 28; i:e., the

iatervals under the BINORM are Qlightiy closer to the mean tham under the BETA.

)
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[hese dJetailed deéscriptions of differences in Table 1 seem inéignificant,
but they do reflect some généréi patterns of differences that are discussed later:
The examplé in Table 1 does not provide a sufficient comparison of the models;
Becausé under all four modeis the true score distribution is svmmerric (E X/n = .5).
In Table 2, skewed true score distributions are introduced with E X/n = .75.
"nder the BETA model, the left skewness introduced by this mean is. reflected in
the negative hvpergeometric densities. Of course, under the NORM model there is
no skewtniess: Under the BINORM and CONORM modeis;, éké&ﬁéss.is allowed for through

the expansion, above the mean, of tne transformed true score scale.

The effects of skewness on differences between the NORM and the other three

models is quite noticeable. At observed scores below the mean (7, 14, 21), the

uppar limits of the NORM are further from the mean than those of the other

models. Also, the intervals for these same scores éré'narfower for the NORM than

for the others, but fot Scorés above the mean (28, 35),the intervals are wider.for the
SORM. Comparing this with results from Table 1 (same n), the left-skewness appears
than for a svmmetric distribution. Also, scores above the mean have narrower
intervals than those of Table 1: This result can be intuitively understood by
considering the density of the true score distribution below and abtove the mean and

its effesct on the conditional distribution on which the limits are based.
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The clear pattern of differences among the BETA; BINORM; and CONORM models
that were found for the symmetric distributions associated QiEHYTéBIé 1 are
not as apparent in Tablte 2. Scill, as expected, the CONORM intervals are typically
shorter and sometimés further from the mean. Also, differences among Iimits
for these three m@dels are again small--just 12 out of 90 possible differences
are greater than .Gl, and 10 of these are .02.

Table 3 contains intérvals that are to be compared with those of Table 1.
The test characteristics for Table 3, rather than being calculated from an exist—
ing test, were derived from those in Table 1. Note that the mean and Si are the

same in both tables, but that n is 25 in Table 3. The observed score variance

in Table 3 was derived by keeping the KR20 estimate of true score variance the

The increase in widths of the intervals due to the decrease ir n can be
expressed algebraically for the NORM. So; under the NORM, the differences in
widths between Tables 1 and 3 follow a simple pattern. For the 50% intervals,
the differences are .016; for the éé%, they are .02, and for the 95%, theyv are
.04, éOnéidéring the 95% interval widths for the 35—it9ﬁ test, a 13% decrease
in widrh is obtained frem a 40% increase in n:. Alsc, there is less regression
toward the mean that comes with tlie higher reliability of the 35-item test.

consistency in their pactern.
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score of 25 are excluded, differences among limits for the three other models are
mainly .00 or .0l. There are, however; six differences equal to .02, indicating
that intervals tend to differ more with smaller n.

Table 4 provides intervals for a 100-item test (E X/n = .75). Note that
for this long test the reliability is below .9. The test charactéristics reflect
those of a certification examination that has a $mall trué Score variance. The
intervals here are much §méiiér than in the other tables. For the EXampie in

355, thé réiiébiiity is similar to the 100-item test, but it has 95%

Wi

Table 1 (n
{ntervals that are almost twice the length of those in Table 4: Clearly; the wmum-
ber of items piayé the primary role in the width of intervals for all the models

6

considered here.

With the exception of the perfect score of 100, all four models have very

similar limits. This is in contrast to the limits of Table 2 in which skewness
introduced by E ¥X/n = .75 made the limits for thé NORM quite distinct from
those of the other models. Actually, the coefficient of skewness under the

BETA is smaller for the example in Table % than for Table 2, but the effect of
skewness on the intervals is still noticeable: For example, under the BETA,
scores below the mean are associated with wider intervals than those above the

mean, while the NORM intervals are a constant width.

For‘ali four models the error variances dEpend primarily on n, but recall
rhat this need not be the case for the CONORM and NORM models in which one has an
option of using an estimate of overall error variance different from that obtained
from a KR20.

O
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To obrain a more general idea of differences among the meodels, mean-abSolute-

ifferences were calculated using all the limits from the example tests in Tables

(oW}
H\

I through 4 as well as those from three other éxamples. Table 5 contains these

means which were calculated by contrasting limits for the Six possible pairs of

the four models. As an example, consider the first test depicted in Table 5
{n = 25, E ¥/n = .5). Here we find the méan-absolute-différence between the

lower 95% limits of the BETA and the BINORM models is /006. This mean appearrs

condéistent wicth Table 3, in which most diffetrences in limits between these two

models are either .00 or .0l:

Insert Table 3 about here

Each mean-absolute-difference was calculated by contrasting Iimits for a

pair of models at each observed score, and by weighting each absolute difference

bv the megative hvpergecmetric density associated with the BETA model. This

weighting was especially valuable for the longer tests. Consider the 100-item

test with £ ¥/n = .75. From empirical data and according t> the density func-

any, examinees who score below 20 on this test.

tion; there are verv few, if
- -

e3m§ cléar that some function is necessarv that avoids weighting differences

Ui

Sa, it
at scores below 20 in the Same wav as differences around the mean observed

ore OtherwiSe. mean-absolute-differences could fail to reflect the nature

S0

{

erences that occur in practice.

Fty
o

the dif

I iy

o}
An obvious trend in Table 5 is the decrease in mean-absolute- Tfigrences
with an increase in number of items. Of course, the intervals are aiso shorter

longér tests. However, from other calculations; it was found that the

1,

!

or th

percéntage decrease in widths for longer tests is less than the percentage de-
credse in mean-absolute-differernces; i:e.; the decrease in mean-absolute-differences

o is not simply a result¥f a decrease in the ~vidths of intervals.
ERIC | 2
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setected limits of Tables 1 through 4. Of these differences; sgme of the largest
occur wiﬁh contrasts of the upper limits for the examples with E X/n > .5.

Recéli that the other three models have %eft—gkewed true score distributions
when E X/n > .5. 1In effect, these results are an indirect indicator of

act that for observed scores below the mean the upper limits for the NORM

Fy

the
modél are farther from the méan than those of the othér three models. A more
direct indicator is thé mean differénce (with éign) of the upper limits for
obServed scores beiow the mean. FOr the eXamples in which E X/n > .5, mean
differences of upper limits (NORM-others) are all positive:. For the two cases

, the means are also positive but much smaller. Table 6

i
wu

in which E X/n :

srovides means for three examplas:

-

Returning to Table‘S, the mean:abSblute:differénce% betwesn the BINORM and
CONORM models (different error Variancés) do not seem any iargér than différénces
betwsen the BETA and BINORM models (différences in éhépé of the true score dis-
the gredter tﬁe difference

tributions) Recall ihat the larger the value of éi
h

in error variances becween'the CONORM model and both the BINORM and BETA models.
This makes the CONORM intervals shorter and slightly less regressed to the mean.
Apparently, the values of Si are not large enough to cause important differences
in limits. Since the values of Si used here seem typical of standardized tests,

the small effect of this paramete: on the limits can be considered general.

(
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There is a convenient contrast of Si in the examples. Consider the two tests
with n = 35. One has an si that is 50% larger than the other. Table 7 pro-

vidés the mean widths of the intervals for thesé two examples (the negative
1

hvpergéometric density is used for thése means also). Notice that the differences

in medn widths between the BINORM and CONORM models for the test with si = .027

.018.

1

are about 50% larger than the differences in mean widths for the test with Si
Sstill; tie differences for the larger S? represent just 8% of the méan widths
of CONORM intervals, and differences for the smaller Sé are only 4% of the mean
widths:

comes with an increase in n:
Plots of interval widths against observed scores were made for all the
777777 The plots are not included here, but thef; general nature can be des-
cribed: From Equation 6, the interval widths for the NORM model are constant
across the observed scores. For the other three models, the plots aré similar

and depend on the mean. With E X/n = .5, the interval

ERIC
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widths increase from zero to the mean, and then décrease éymmétricaiiy trom
the méan to 1.0. Around the mean, the widths ior the three models are Laréér
than for the NORM and smaller otherwise. For the eXamples with E X/n = 075,
the intervals are approximately the same width up to the mean, and then thev
decrease from the mean to 1.0. Thev decrease at a faster rate past the mean
than when E X/n = :5 and-end ap (at 1:0) with a smaller width:

Differences between the BETA and both the BINORM and CONORM models that
were noted in Tabié t were found more generatily for ati examples. Plots of
hetwesn the BETA and both the BINORM and CONORM models occur at very extreme
observed scores: For verv low scores, the upper limits of the BETA are closér

o the mean than those of the BINORM and the CONGRM. Similarly, for very high

cores, the lower limits of the BETA are closer to the mean.

7]

The plots orf the differences also reVealéd that an opposite but slighter
trénd occﬁré for sScores that are not eXtreme. That is, for such scores that
iré lalow the mean, che upper limits under the BETA are slightly further from
the mean thdn urnder the BINORM; and for such scores thac are above the mean, the
lower limits under the BETA are Further from the mean Ehéﬁ under the BINORM.
A similar change in trend occurs fer the BINORM—CONORM con-rast. These results
are mostAappafEnt for the symmetric true score distributions, and thev were notad
in Table 1l: For a skewed diéﬁf%gdﬁibh, the trend is mitigated.

Summarv and Conclusions for Tolarance Comparisons

to follow a pattern, and many of the differences reflect what was expetted from

differences in the models. in this sense, the difference can be considered

generalizable to other realistic test characteristics.

. VN\E

O
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scoring: The bou§ded nature of a proportion correct score %ééié is an

apparent proolem, aad the assumption of iﬁdépéhdeﬁce of error and true score
(without a trvansformation) seems unwarranted (Lord, 1960). ThéSg issues are
reflected n differences be:.wzernn the NORM intervals and the other three models,

ciailv for shorter tests. But, recall that for longer tests the intervals

el

Sp

Wi

are quiée Similar fgr all four models.

fﬁe Jdifferences among the BETA, BiNORM, and CONOﬁﬁ intervals seem unimportant.
Because the BETA model has been frequently discussed in the literature; appears
useful for a variety of applications, and does not involve approximations, one
might feel satisfied in calculating intervals under the BETA and ignoring the
other two models. However, the intervals that were calcolated under the CONORM
wvere based on KR20, whereas a different estimate of reliability could be imcor-
porated. In cother words; the smatl differences found between CONORM and BETA
intervals were based on tvpical values of Si , @nc might have been larger if

retiabitities were estimated in a different manner.
, N
pp—

rom che results, there seems to-be little reason to choose the BINORM

*1y.

over the BETA model for calculating intervals. However, it could serve as a
substituré for the BETA, éspeciidllyv Since the BINOR! model has some mathematical
conveniénces that might prove userful for the problem of estimating tolerance

intervals with small sample sizes. : N

The NORM model is quite distinct from the others; vet the tolerance fnter-
vals for scores not ar the extreme were similar to the other modeis:. Since

average error variances were simitar for all four models, the comparisons can be

(%]
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considered to be among differences in the sizes of error variance at different
Score levels and in the shapes of true score distributioas. One can conclude
that the small differences in intervals, at other than extreme scores, indicate
that tolerance intervals are mot very sensitive to differences in shapes of
along the true score scale: However, all four models do have regularly-shaped

distributions and differences amomng them in error variances,; at other than extreme

scores, are not that arge.

O
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Comparison of Confidence Intervals

Three error models are used for calculating confidence intervals in the
examples below: normal error with' equal variance for all examinees, binomial
error, and compound-binomial error.

The normal intervals are of thé form
“/n ¥ oz , 7 : ) 17)

Note that ~_ is calculated through a KR20 for the examples below, and the same
c
vatres of 3é were used for the NORM model tolerance intervals in Tables 1 through 4.

DI

For the binomial error model, there are many published téble§>épecificélly
developed ror confidence intervals on a binomial parameter. See Kendall and

ever; none of the available tables provide confidence intervals for the 50% and
8% coefficients; so these calculations had to be performed for this paper: The
calculations are SCraigEtforward encugh to be generally useful. Some details
about thé calculation of thege intervals are reported below to allow an analytic
compariéon with tolérance intervalé undér the BETA modeél. ‘

- Most of the published tables on binomial confidénéé intervals were generated

by solving the following equations for the lower (L) and upper (U) limits of the

intervals:

<;1> - o gy (18)
X

4=
~
[N
-

Wy oo

d
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t (n) el -w™d = a2 (19)
o \J

Here, ¥ is the observed number of successes (correct) in n trials (items).

e K

[ -

Because of the discrete nature of the binomial; it is not possible; in
general, to construct intervals with a particular ccefficient. Intervals con-

structed from Equations 18 and 19 do have a coverage probability greater than

or equal to 1 - 1; i.e.,
P(Lz72U) 2 1l-a , ‘ (20)
N
where = is the binomial parameter and L and U are now considered random variables

rhat are functions of X rather than x. Kendall and Stuart (1979, pp. 113-116 and
sinomial: And; Wilks (1962; p: 368) provides a general theorem for setting con-
fidence intervals for discrete variables.

Intervals constructed from Equations 18 and 19 are referred to as central

intervals. This is because; in addition to the claim made in Equétion 26,
(L = ) = 1 - 3/2 and P(U > 7)) = 1 - /2 . These two additional

statements seem to be a desirable feature of confidence intervals, and most
tables are set up this way. However, by relinquishing these two claims, i.e.,

onlv tequiring Equation 20 to hold, shorter norcentral intervals can be calculated:

RIC | ; :
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Equations 18 and 19 can be expressed in terms of the cumulative distribu-

rion function of a beta:. Equation 18 can be written as

(s, n-x+1) = a/2 . (21)

Thus, one can enzer a beta table to find the L that corresponds to 2/2 , or as
was done for the tables below, use a computing routiné for Einding the inverse
of a beta [IMSL (lgié) Subroutine Mbééii]. éimiiériy, for EQuation 19, the
upper limits can Bé determinead By éoiving

I(l.- U) (n - x, x + 1) = /2 "

or U:. <(The F distribuzion czn also be used; see Johnson & Kotz, 1969, p. 39.)

r,

Recall Equation 7 for the Lower limit of a toleraace interval under the BETA.

if a =0 and b = 1 in that equation, it would ‘cgqual Equation 21;

bVl
i

Note th

making equal the lower limits of the binomial confidence intérval and the BETA

toterance iaterval. Eqguation 8 for the upper tolerance limits can be reexpressed
as lkL o (b +n~-x%x; a+x) = a/2 . Note that a =0 and b = 1 do not make
this equal to Equatiem 22. Clearly, it is not possible to choose the a and b

parameters of the true score distribution such that the corfidence and tolerance
limir: are the samé. This i8 not Surprising given the different nactura of the
iutervals. Conrider also that under the binomial we can only make inequality
statements because the coverage probability is a function of the discrete variable X .

Under the BETA model, we make exact coverage probability statements because the

rariable T piven x is continuous.

4125
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For compound-bifiomial error, the two-term approximation which was dis-
cusséd undeér the CONORM model was also used for error variance here: Recall that
arror variance underlthe approximation is (a - 2k)/(4n? + 2n); where k was
~hosen to make average error variance the same as that calculated from a KR20.
%155, recall that this made average error variance the same for the CONORM and
NORM modéié:

Intervals for the compound-binomial are only approximations. The Freeman=Tukey
transformation was used to yield approximate normality with constant variance:
Intervals were then calculated [g + 2d/it(n - 2k)/ (4n? * 2n)15] , a continuity
correction was édded; and a transformation back to the proportion correct scatle
was applied.

Two txamples

Two tables are provided for comparison of confidence intervals under the
rirese error modéls. Table 8 contains intervals for a test with n = 35. Tro

srror variance, 7¢ , for the normal error model corresponds to error variance under

e
the NORM model for Table 1. Similarly, the same vatue of k was used in Tables 1 and

/,

3. Table 9 has n = 100 and corresponds to parameters used in Table 4.

From Tables 8 and 9, confidence intervals under the three models are similar

excépt at extreme scores. Ar the extreme score of 35, for example, all three

error models have quite different Iimits. Typically, the normal error intervals

h
Y
“)
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extend beyond 1.0 and are much wider than intervals for the other two models.
The compound-binomial intervals at 1.0 appear quite short relative to the
binomial. This 1s not true at other observed scores, and seems to refléce proB:
lems with the properties of the tranéformation or thé approximations at thié
extreme score.

At other obsérved scores, the binomial inteérvals arée, for the most part,
longer by .01 or thé Same as the cOmpound—BinOmiai intervals. This reflects
the diééérénté in error variance under the two models. Recall that k depénds on
S% énd tﬁac K for Table 8 is associated with the iérgeSt éi in the exampies.
ilso, k for Table 9 is the largest amorg all the examples.

Error distribution shapes affect the intervals in Table 8. Under the nor-

mal error distribution, the intervals are symmectric about the proportion correct

core: In contrast, under the other two models, the distributions are

0

skewed toward :5: For these two models, the lower limits are more distant from
the observed score than the upper limits when the observed score is above the mean.
The reverse nolds for scores below the mean. This is not as noticeable for n = 100

in Eébié é.

Under special circumstances, the binomial error model can be said to hold
5v definition (Lord & Novick, 1968, chap. 11,& chap. 23, p. 524: Lord, 1957).
If test forms are constructed by random.sampling of items and the proportion cor-
rect true score of interest is defined by the domain from which items are

sampied (rather than for a particular sample of items); the binomial error modeil

nolds for any particular examinee as long as item responses are independent from

ERIC
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one item to the next for.that examinee (independEnc”rof responses is violated

by context and other similar effects). Gross and Schulman (1980) provide a suc-

some statements made by van der Linden (1979) in his claim of deterministic

assumptions underlying the binomial.

items. Errors are correlated across examinees. But when we isolate interest to
a particular examinee under the circumstances agovér(randbm sampling of items,

~ o . ~ ~ o . 7ﬂ
étc.), the distribution of observable scorés for that examinée i§ biromial and
it follows that confidence intervals based on the binomiai are appropriatE; O@
course, this does not consider the nature of errors made in providing such con-
fidence intervals for the set of examinees administered the same test form:

In any case, tests are not typically constructed by random sampling: For
example, items are frequi:tiy sampled from fixed categories (Jarjoura & Breﬁhan,.
1982; provide a modet féf\éhéﬁ circumstances). Also, test form diffi;ulty and
ather adjustments are typical of standardized testing. It is usually judged that
these factors make average error smaller than under the binomiéi, and binomial in-
tervals are often Viéwéa as conéérvé;ivé. Still, violation of other assumptions,
tike independence of item responses for an examineé, can make error ldrger than
under the binomial. Binomial intarvals can be considered a useful approximation
as long as average error variance, estimated Qithout réSortiﬁg to binomial assump-
tions, agrees with that‘éétimétéd under the binomial ([1 - kﬁZij&i/ﬁ); and as long
as there is no evidence that error variances at different po{?ts along the score
scale are larger than under the binomial.

e
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A comparison ;f Tables 1 and 8 provide an idea of differemces between con-
fidence and tolerance intervals under the same test characteristics. For the
binomial, the fact that n = 35 is enough to atlow comparisons across the tabtes.
mining error variance fbt‘tﬁé normal and compound-binomial intervals:

Contrasts between the BETA tolerancé intervals and binomial confidence
ig;ervais reveal, as expected, that tolerance intervals are typicaiiy narrower
and shifted from the observed score toward the mean. Differences in limits are
mOSt apparent at extreme scores. Note that the contrast in interval widths
reverses at the extreme score of 1.0:. Similar differences are found for con-
trasts between the normat and NORM intervais and between the compound-binomial
and CONORM inctervats. The BETA intervals of Table 2 can also be compared
directly with the binomial intervals of Table 8. Here, we find some large dif-

ferences at the low scores that are distant from the mean.

Direct comparisons can alsc be made between Tables &4 and 9. Recall that
with @1 = 100, tolerance intervals for all four true score models are guite
similar. In contrast, differences between confidence and tolerance intervals

are large at scores that are distant from the mean:. Consider, for example, the
observed score of 20: Thers, 50% confidence and tolerance intervals do not

even overlap, and for 68% intervals; the upper limits of the confidence intervals
are the same or close to the lower limits of the toléerance intérvéié. The major

reason for such & differencé i that thé observed &core (20) is épproximéteiy 3.7

4,
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scored this low on current forms of this example test). But the contrast does
dramatize points made earlier: When we are couditionally interested in examinee
a, then; from the perspective taken here, we are isolating interest in that
sxaminee's distribution of sbserved scores ot in the distribution of scores of
other examinees. This is not to say that information about othér éxaminees
cannot be used in imterpreting a confidence interval. The point is that if we
want a confidence interval for a particuiat examinee, thén that interval is not
designed to take the performance of othér examinees into consideration: In

contrast, when we condition on observad score, we are formally interested in

observations from thé population of &xaminees; i.e:., in the associated distri-

bution of trué Scorés. Information that an cbserved score is very uniikely

is obviously important and affects the nature of the tolerance interval.
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Discussion
i Such strong assumptions as used for setting tolerance or confidence'intef—
vals need to be checked: Some methods for checking are discussed belsv. Also,
Bayesian credibility intervals and confidence and tolerance intervals are con-
trasted.

Chécking Assumptions

All four true score models are specific about what to expect for observed
score distributions. iﬁus, the usual chi:squéré test of éit could be calculated and
differences between observed and expECted frequencieé éxéminéd. None of thase
models are likely to closely fit obse?yations; ﬁgwever, cogéidér the possibility
that che. BETA fits but the BINORM does not. ﬁnder such.circumstances, orie wQuid
prefer the BETA tolerance intervals, but; from the results above, they would not

differ substantially from those of the BINORM:

If one assumes that anm approximate 6éﬁﬁéﬁﬁaf5iﬁéﬁiéi error model is appro-
priate; then procedures developed in Lord (1969) and implemented in a computer
program by Wingersky, Lees; Lennon; and Lord (1969). can be used to estimate a
"smooth' true Score distribution without épébifying its form. This could be
compared to a beta or the other true Score distribution$ assumed in the models
above in order to determine if there are large discrepancies. For example, the
estimated distribution might be noticeably bi-modal or might be truncated at
some point above zero. Clearly, this could cause pfoblems'in tolerance intervals.
Lord and Stocking (1976) derive a procedure for setting simultaneous confidence
intervals around the conditional means for true scores at every observed score.
fﬁéy dssume the binomial error model but do not specify the true score distri-
bution. These intervals could be compéréd with the cénditibnal means that are
specified by each of the four true score models. Aiéo, Wilcox Ciééi) reviews
procedures for checking the beta-binomial assumptions. )

For the BETA; BINCRM; and CONORM mcéeis; the true sccre distribution is

, bounded by zero and one. The possibility of guessing correctly in ﬁgkgiﬁié choice
LS
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tests is often considered to imply that true scores do not extend down to zero.
Also; evidence of this effect has been found by Lord €19653) in using a four
parameter beta distribution for true scores (two of the parameters are end-
points): For a true score distribution that ends, say; at .15; tolerance
intervals of number correct scores near zero would obviously bé affected. This
is rather unimportant if few examinees Score near or below a guessiﬁg level
(as is the case in most of thé éxémpié tests ébove). Otherwise, a nonzero
énd=point Should be considered in setting tolerance or confidence intervals:
Perhaps the most important checking is with regard to measurement error
variance. Both confiderice and tolerance interval widths are, Zc: the most
part, determined by error variance: And, under the above models, assumptions
about error variance are quite Strong. ' These assumptions could be chétk%&, )
if deemed appropriate, by 6b§éiﬁiﬁg realized values of the error variable in
a parallel forms study: & simple check on the binomial or the approximation
to the compound-binomial error variances wculd involve transforming the ob-
served scores (Freeman-Tukey), estimating error variance for appropriate ranges
of observed scores; and comparing these with the constant values specified by
the two models. If the eéstimated error variances are fairly constant but
for estimating k differently from that given in Equation 16.

Bavesian Credibilityv Intervais

With a Bayesian approach, we can isolate interest in a particular
examinee's true score and still interpret an interval set up for that true
v

scors as covering a proportion of a distribution (posterior) of that true

score for a given observed score or $cores. This is because we start with a

Note that trye score i5 defined here as the expected proportion correct,
not the expected proportion an examinee knows without guessing:

1 43
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distribution (pribr) for the true score. This is in COnﬁrast with a confidence
interval that does not consider a distribution for the true score. 1In a sense,

a Bayesian approach ap%éér§\to prQViaé a more informed statement of inference
because it uses information besides an éxéminéé'§ oBSérvéd score in aétérmining
an interval for that examinee. As argued above, a confidence interval Seems use-
ful in the situation in which a career counselor or classroom teacher is intar—
preting a particular examinee's score. How @ confidence interval ends.up being
interpreted will likely depend ou ail che other information a counselor or

of other examinees. In this sense, a confidence interval can be considered a
less formal method of inference as compared to a credibility interval.

Althougﬁ a conceptual d%stinction exists between tolerance and credibility
intervals, théy\caﬁ be made to coincide numerically. Consider that tolerance
incervals under the BETA model aré the Samé as central credibility intervals
in thé case in which every examinee is given thé same prior (betala, bl, where
a and b are population parameters for the true score distribution) and the

conditional distribution of observed scores is dssumed binomial. It is not-

‘clear that they could be made the same when estimaticn issues are considered

-

for tolerance intervals.

Concilusions
In consideration of issues regarding intervals for true scores, Cdnfidence
intervals seem useful when score interpretation is intimately concerned with a
particular examines. In conﬁéaéc, é}toiéréncé interval is quite informative
for interpreting a particular observed score with respect to a population of
axaminees. Also, Rnowlcdge that examinees who obtain avparticular observed
Scure iikeiy héVe true scores within a éSZ tolerance interval is a uszful;
adjunct to a confidence interval for a particular examinee .

THe claim that a confidence interval procedure covers, on average, the

true scores of a popuiation of examinees with sorie chosen probability depends

I
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on weak assumptions: It is not a very informative claim with respect to a
particular examinee: If such a claim is the basis for interpreting confidence
intervals, their usefullness for a particular examinee ié diminished. Further,
when a population of examinees are considered in the interpretation of an
observed score, tolerance intervals are to be preferred.

Tolerance intérvals providé simuitaneOusly information about the discrimina-

tion afforded bv a measurement procediire for some population of examinees and
information about the preclsion of medsurement. Consider the possibitity of

narrow tolérance intervals relative to the proportion correct scale (high precision)
combined with few, if any, nonoverlapping tolerance intervals in the probable

range of observed scores (low discrimination). This possibility can be trans-
lated simply to low reliability and small error variance (relative to the propor-—
tion correct scale); but it does much to clarify the meaning of such a &tatement.
Confidence iﬁEéf%éié are lacking in this regard.

Because tolerance intervals require the specification of the true score dis-
tribution conditional on observed scoré, it was necessary to address the issue of
sensitivity of the intervals to differing strong assumptions about the joint
distribution of observed and true scores. For realistic standardized test
“haracteristics, tolerance intervals aré, fer the most parts insensitive to
differences in the shapes of trué score distributions and to small differences
in error varianéés énd reliabilities. 1In contrast, it is clear that confi-

dence and tolerance intervals are quite distinct, especially for scores not close

to the mean.

ERIC

Aruitoxt provided by Eic:



48

References

Crow; E: L. Confiden-& intervals for a proportion. Biometrika, 1956, 43, 423.

W. J., § Massey, F. J., Jr. Introduction to statistical analysis. New

<.y

York: McGraw Hill, 1969.

Freeman, M. F., & Tukey, J. W. Transformations related to the angular and the

Squaré root. Thé Annals of Mathematical Statistics; 1950, 21; 607-611.

Gravbill, F. A. Theory and application of the linear model. WNorth Scituate,

Mass.: buxbury %reéé, ié%é.
P

Gross, A. L., & Shulman, V. The éppiicébiiity.of the beta binomial model for

criterion-referenced_te%ting. Journal gﬁ Educational Measurement,-lgéo,
17, 195-200:

Hambleton, R: K:; Swaminathan; H:, Algina, J:, & Coulson., D. B. Critérion-
referenced testing and measuremen:z: A review of technical issues and

developments. Review of Educational Research, 1978, 48, 1-47.

Psychometrika, 1976,

Huvnh, H. Statistical considerations of mastery scores:
41, 65-78.

International Mathematical and Statistical Lgbraries. IMSL Libraries (7th ed.).

3

Houston: Author, 1979.
Jackson, P. H. Some Simple approximations in the estimation of many parameters.

B;ieish,Jgurnalfgg Mathematical and Statistical Psychologv, 1972, 25,

213-228:
Jarjoura; D., & Brennan, R: L: A variance components modél for measurement pro=

&  cedures associated with a table of specifications. applied Psvchological

Measurement, 1982, 6, 161i-17i.

U1

™o

ERIC

Aruitoxt provided by Eic:



49

Johnson, N. L., & Kotz, S. Distributions in statistics: Discrete distributions.

Boston: Houghton Mifflim, 1969:

Keats, J. A:; & Lord, F: M: A theoretical distribution for mental test scores:

Psvchometrika, 1962, 27, 59-72.

kendaii, M.; & Stuart; A: The advanced theory of statistics {(4th ed., Vol. 2).

New York: MacMillan, 1979.
Lewis, C., Wang; M., & Novick, M. R. Marginal distributions for the estimation

of proportions in m groups. PéYchométrika, ié%é; ééj 63=75.

Lieberman; G. J.;, & Miller, R. é. éimuiténéous toiéréncé intérvais in regreSSion.
Biometrika, 1963, 50, 155-168.
Lord, F. 't. Do tests of the same length have the same standard error of measure-

h
Y

ment? Educationmal and Psychological Measurement; 1957, 17, 510-52%.

Lord, F. M. An empirical study of the mormality and independence of errors of

measurement in test scores: Psychometrika; 1960, 25, 91-104.

Lord; F: M. & strong true score theory, with applications. Psychometrika; 1965,
30, 239-270.
Lord, F: M. Estimating true-score ilistributions in psychological testing (an

Y A - , o o o o - ' ST
empirical BaYes estimation problem). Psychometrika, 1969, 34; 259-299.

tord, F. M., & Novick; M. R. Statistical theories Qﬁ mental test scores. ﬁeading,

Mass.: _Addison-Wesley, 1968.
Lord; F. M.; & é;otking; M. An interVéi estimite fOr making Sﬁatistical inferences

about true scores. Psychometrika, 1976, &1, 79-87.

Mostéller, F., & Tukey, J. W. Data analysis, including statistics. In G. Lindzev

&% E. Aronsen (Eds.), The handbook of social psychology. Reading, Mass.:

Addison-Wesley, 1968.

4 I
31




50

Novick, M. R., & Jackson; P. H. Statistical méthods for &ducational and psycho-

logical research. New York: McGraw ﬁiii, 1974.

Novick, M. R., Lewis; C., & Jack.,on, P. H. The estimation of proportions in m

groups. Psychometrika, 1973, 38, 19-45.

-

Proschan, F. Confidence and tolerance intervals for the normal distribution.

Journal of thé Américan Statistical Association, 1953, 48, 550-564:

Rao, C. R. Linear statistical inference and its applications. New York:

Wiley,. 1973.

Stanley, J. C. Reliability in R: L. Thorndike (Ed.), Educational Measurement

(2nd ed.): Washington: American Council on Education, 1971, 356-442.
Tucker; L. R. A note on the estimation of tést reliability by the Kuder-Richardson

formula (20). Psvchometrika, 1949, 14, 117-120.

van der Linden; W. J. Binomial test models and item difficulty: .Applied Psycho-

logical Measurement, 1979, 3, 401-41l:

Wald, a., & Wolfowitz, J. Tolerance limits for a normal distribution. Annals

of Mathematical Statistics; 1946, 17; 208-215. w

wallis, W. A. Tolerance intervals for Iinear regression in J. Neyman (Ed.),

Second Berkelev Svmposium om Mathematical Statistics and Probability.

Berkeley: University of California Press,; 1951, 43=51.

Psvchometrika; 1978, 43, 245-258.

Wilcox; R: R: & review of the beta-binomial model and its extensions. Journal

of Educational Statistics, 1981, 6, 3-32. .

Wwilks, S. S. Mathematical statisties. New York: Wiley, 1962.
v

Wingerskv, M. $., Lees, D. M., Lennon, V.; & Lord, F. M. A computer program for

eStimating true-score distributions and graduating observed score distribu-
tions (ETS R?search Bulletin 69-4): Princeton, N.J.: ‘éduCétiOnai Tesﬁing
24

Service, 1969%




TABLE 1
Tolerance_Intervals for n = 35, E X/n = .5;
0%, = 0423, and s3 = .027

JEN
AR

N.H. ~ BETA  BINORM CONORM  NORM
Dens. Coeff. L U L U LU L U
| ©50% 20 29 21 30 20 29 19 28
7 .2 .024 68z 18 31 19 32 19 “31 17 31

95% 13 38 13 39 14 38 10 37

, , 50% 36 47 37 47 37.47 37 &5

14 .4 .n46  68% 34 49 34 50 35 49 34 48°

95% 27 57 28 S7 28 56 28 55

50z 53 64 53 63 54 63 54 63

21 .6 .046 68%Z 51 66 5L 66 51 65 52 66

'95% 43 73 43 72 44 72 4S5 72

50% 71 80 70 79 71 8 72 8l

: 28 .8 .024 68% 69 82 68 8l 69 81 69 83

: 957 62 87 61 87 62 87 63 90

504 91 96 94 98 95 98 89 98

35 1.0 .001L 68% 90 97 93 99 94 99 87 101

957 83 99 88 100 90 100 8C 107

] Note. KR20 = .87, KR21 = .86, k = 2.2, -

" beta a = 2.953,and beta b = 2.953. Decimal points on

limits are omitted.
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TABLE 2
Tolerance Intervals for u = 35, E X/n = .75,
2. = .0227, and S? = .018
X/n i

6p§:7 ‘i i{iﬁ; BETA BINORM CONORM . NORM
Score n Dens. Coeff. L U L U L U L U
T sor 27 36 28 39 27 3% 26 3
7 .2 .001 68% 25 39 26 40 25 38 25 36

95% 19 46 20 47 19 45 19 42
_50% 42 53 44 S& 43 53 42 51
008 687 40 55 42 56 41 S5 41 53

95% 33 62 35 63 34 62 35 58
, 50% 58 68 59 69 59 68 59 67
21 .6 .038 68% 56 70 57 71 55 70 57 &9

95% 49 77 50 77 50 76 51 74
50% 75 83 74 83 75 83 75 83
28 .8 .075 687% 73 8 72 84 73 84 13 85
95% 66 90 66 B89 66 89 b8 91
, ~ 50%z 93 97 95 98 95 99 91 100
35 1:0 :018 687% 92 98 94 99 94 99 89 101
95% 87 99 90 100 91 100 84 107

Note. KR20 = .81, KR21 = .79, k = 1.9,
beta a = 7.109, and beta b = 2.370. Decinal points on
limits are omitted.
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TABLE 3

Tolerance,fntérv;1$7fc: n éWEQ; E,X/“ = .5,
02, = :0444; and 8% = .027
. X/n . hl
Obs. g N:H:. BETA BINORM CONORM NORM

Score n Dens. Coeff. 'L U L U L U L U

56z 20 3t %2 32 21.31 20 30

5 .2 .034 687% 18 34 19 35 19 34 17 33

95% 12 42 13 43 13 41 10 40

_50% 36 48 37 48 37 48 36 47

.063 68% 33 5% 34 5% 34 51 34 50

95% 25 59 26 60 27 58 26 57

, . 50% 52 64 52 63 52 63 53 64

15 .6 .063 687% 49 67 49 66 50 66 51 66

95% 41 75 41 74 42 73 43 74

50% 69 80 68 78 69 79 70 80

20 .8 .034 68%2 66 82 65 8L 66° 8l 67 83

95% 58 88 58 88 57 87 60 90

50% 87 94 91 97 92 97 86 97

25 1.0 .003 68% 85 95 39 98 91 98 84 100

~_9s5% 78 98 B84 100 86 100 76 107

Note. KR20 = .83, KR21 = .81, k = 1.6,

beta a = 2.985, an.! beta b = 2.985. Decimal points on

limits are omitted.
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TABLE &
Tolerance Intervals for n = 100; E ¥X/n = .75;
02;h = .0119; and'szi = .020

Obs. x N.H. ___ BETA BINORM CONORM  NORM
COTE I ens. Lo« U L . U_-.L U L U
31 25 31 25 30 25 30
32 24 32 24 31 24 31
37 21 37 20 35 20 35
48 43 49 42 4B 43 47
40 .4 .001 68% 41 S0 41 50 41 S0 41 48
95% 36 S4 37 55 37 S4 37 52
_ ) 65 60 66 59 65 60 65
60 .6 .013 682 S8 67 58 67 58 67 58 66
957 S3 71 54 71 S4& 70 55 69
N ~ s0% 77 82 77 82 77 82 77 82
80 .8 .036 687 76 83 75 83 76 83 76 83
957 72 86 71 86 72 86 72 87
. s0% 95 98 98 99 98 Y9 S4& 99
100 1.0 .000 8% 95 98 97 99 98 100 92 100
: 95% 92 99 96 100 96 100 90 104

~ Note. KR20 = :87; KR21 = :85; k = 6.2,
beta a2 = 13:137; and beta b = 4.379. Decimal points

on limits are omitred.
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TABLE 5
Piean—Ab’sﬁ’ci)iliurtg—il?'j:rfféééﬁcééiéi7T6iéf‘éﬁéé Limits
_ for Seven Test Characteristics

- BETA-  BETA-  BINORM-  BETA-  BINORM- CONORM-

Test BINORM CONORM  CONORM NORM NORM NORM

deteristics Coeff. L .U L U L U L U E U L U
A=25 EX/n=.50 50% 9 9 6 6 5 5 6 6 12 12 8 8
g2 (X/n)=.044 68% 8 8 6 6 "6 6 9 9 14 14 9 9
S2(i)=.027 . 95% 6 6 11 11 8 8 18 18 21 21 15 15
n=25 £X/n=:75 " 50% 8 8 5 7 i 4 4 10 7 14 511
02 (X/n)=.024 68% 8 7 4 7 5 4 713 8 18 7 14
$2(i)=.018 95% 7 4 9 5 6 5 18 27 17 30 15 28
'n=35 EX/n=:50 50% 707 5 5 4 o4 5 5 9 9 6 6
02 (X/n)=:042 68% 6 6 5 5 5 5 77 11 11 8 8
S2(1)=:027 95% 5 5 9 9 8 8 16 6 18 18 13 13
n=35 EX/n=.75  50% 6 6 4 5 33, 49 612 4 9
62 (X/n)=.023 68% 6 5 45 4 3 712 7 15 6 13
S2(i)=.018 95% 5 3 8 5 6 5 17 24 15 26 13 24
650 BX/as.60 S0z & &4 3 3 2.2 33 35 24
2 (X/n)=.029 68% 4 & 3 0% 3 3 4 4 4 7 3 6
S2(i)=.020 95% 3 3 7 5 5 5 7 10 7 13 5 12
n=75 EX/n=.60  50% 33 2 2 2 2 2 4 3 6 2 4
32 (X/n)=.023 68% 30 2 3 3 3 45 4 7 3 5
S=2(i)=.022 95% 2002 6 -5 5 5 8 10 8 12 5 9
a=100 EX/n=.75  50% 2 2 1 2 2 2 303 2 & 2 2
32 (X/n)=.012 68% 2 2 2 3 2 2 4 & 3.5 2 2
S2(1)=.020 95% 2 1 64 5 4 8 9 7 10 5 &4

8\feans are in thousandths; i.e.; 5=.005. )
Derived from example test with n=35, EX/n=.75.
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TABLE 6
'Mean Differerces of Upper Limits
...____ For Observed Scores Below the Mean

E X/n = .5 ~ EX/a= .75
BETA-  BINORM- CONORM- BETA- BINORM- CONORM-

50%Z .005 .010 .004 .017 .019 .014
n=35 68% .007 .012 .005 .020 .023 .018
95% .017 .019 .008 .026 .029 .023
50% .007 .013 . 006 .022 .024 .018
n=25 68% .009 .016 .007 .025 .027 .021
95% .020 .022 .009 .029 .033 .026
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TABLE 7
Meau Widths of Intervals

Test Characteristics Coeff. BETA  BINORM CONORM  NORM
n=35 EX/n=.5 50% .098  .097  .091  .092
02 (X/ny=.042 68% . 144 .143 135 137
§2(i)=.027 95% .281 277 .262 1267
KR20=. 87 ,

1235 EX/3%. 75 sox  .083  .0k2 078 080
52 (X/n)=.023 68% .121 <121 115 118
$2¢i)=.018 95% .237 .234 .224 232
KR20=.83

=100 EX/n=:75 50% .052 052 .049 053
5% (X/n)=:012 68% .077 077 .072 078
$°(1)=:020 957% 150 153

.151

.141

Ki 0=.87

<o
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TABLE 8

Confidencé Inteérvals for n = 35 _
Obs.  x , Binomiat Normal Comp.-Bin.
Score n Coeff. L U L U L U
Cosor 15 27 15 25 15 28
7 2 68% 13 29 13 27 13 28
95% 8 37 6 34 8 35
N . 50% 33 47 35 45 33 47
14 G 68% 31 50 33 47 31 50
95% 24 58 76 54 24 57
N . 50% 53 67 55 65 53 67
21 .6 685 50 69 53 67 51 69
95% 42 76 46 74 43 76
. 50% 73 85 75 - 85 7% 85
28 .8 68% 71 87 73 87 72 87
95% 63 92 66 94 65 92
50% 96 100 95 105 99 100
35 1.0 68% 95 100 93 107 98 100
95% 30 100 86 11495 100

Note: Decimal points on limits are omitted.
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TABLE 9
Confiderce Ittervals for n = 100 .
Obs. x Binomial Normal Comp.-Bin.
Score n Coeff. L u L u L u
7 50% 17 23 17 23 - 17 23
20 .2 68% 16 25 16 24 16 24
95% 13 29 13 28 13 28
N 50% 36 44 37 43 36 44
40 4 687 35 46 36 44 35 45
95% 30 50 32 48 31 50
-~ - 50% 56 64 . 57 63 56 64
60 - 6 687 % 65 56 64 55 65
95% 56 70 52 68 50 . 69
. 50% 77 83 77 83 7783
80 .8 687 75 84 .76 84 76 84
95% 71 87 72 88 72 87
T son 99 100 - 97 103 100 100
100 1.0. 68% 98 100 96 104 99 100
—— 957 — — 96 100 — - 92 108 - 98 100
Note: Decimal points on limits are omitted:.
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